Direct measurement of Gag–Gag interaction during retrovirus assembly with FRET and fluorescence correlation spectroscopy

نویسندگان

  • Daniel R. Larson
  • Yu May Ma
  • Volker M. Vogt
  • Watt W. Webb
چکیده

During retrovirus assembly, the polyprotein Gag directs protein multimerization, membrane binding, and RNA packaging. It is unknown whether assembly initiates through Gag-Gag interactions in the cytosol or at the plasma membrane. We used two fluorescence techniques-two-photon fluorescence resonance energy transfer and fluorescence correlation spectroscopy-to examine Rous sarcoma virus Gag-Gag and -membrane interactions in living cells. Both techniques provide strong evidence for interactions between Gag proteins in the cytoplasm. Fluorescence correlation spectroscopy measurements of mobility suggest that Gag is present in large cytosolic complexes, but these complexes are not entirely composed of Gag. Deletion of the nucleocapsid domain abolishes Gag interactions and membrane targeting. Deletion of the membrane-binding domain leads to enhanced cytosolic interactions. These results indicate that Gag-Gag interactions occur in the cytosol, are mediated by nucleocapsid domain, and are necessary for membrane targeting and budding. These methods also have general applicability to in vivo studies of protein-protein and -membrane interactions involved in the formation of complex macromolecular structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative fluorescence resonance energy transfer microscopy analysis of the human immunodeficiency virus type 1 Gag-Gag interaction: relative contributions of the CA and NC domains and membrane binding.

The human immunodeficiency virus type 1 structural polyprotein Pr55(Gag) is necessary and sufficient for the assembly of virus-like particles on cellular membranes. Previous studies demonstrated the importance of the capsid C-terminal domain (CA-CTD), nucleocapsid (NC), and membrane association in Gag-Gag interactions, but the relationships between these factors remain unclear. In this study, w...

متن کامل

Perturbation of Human T-Cell Leukemia Virus Type 1 Particle Morphology by Differential Gag Co-Packaging

Human T-cell leukemia virus type 1 (HTLV-1) is an important cancer-causing human retrovirus that has infected approximately 15 million individuals worldwide. Many aspects of HTLV-1 replication, including virus particle structure and assembly, are poorly understood. Group-specific antigen (Gag) proteins labeled at the carboxy terminus with a fluorophore protein have been used extensively as a su...

متن کامل

A Quantitative Approach to Evaluate the Impact of Fluorescent Labeling on Membrane-Bound HIV-Gag Assembly by Titration of Unlabeled Proteins

The assembly process of the human immunodeficiency virus 1 (HIV-1) is driven by the viral polyprotein Gag. Fluorescence imaging of Gag protein fusions is widely performed and has revealed important information on viral assembly. Gag fusion proteins are commonly co-transfected with an unlabeled form of Gag to prevent labeling artifacts such as morphological defects and decreased infectivity. Alt...

متن کامل

Three-Dimensional Reconstruction of Three-Way FRET Microscopy Improves Imaging of Multiple Protein-Protein Interactions

Fluorescence resonance energy transfer (FRET) microscopy is a powerful tool for imaging the interactions between fluorescently tagged proteins in two-dimensions. For FRET microscopy to reach its full potential, it must be able to image more than one pair of interacting molecules and image degradation from out-of-focus light must be reduced. Here we extend our previous work on the application of...

متن کامل

A conformational transition observed in single HIV-1 Gag molecules during in vitro assembly of virus-like particles.

UNLABELLED The conformational changes within single HIV-1 Gag molecules that occur during assembly into immature viruses are poorly understood. Using an in vitro assembly assay, it has been proposed that HIV-1 Gag undergoes a conformational transition from a compact conformation in solution to an extended rod-like conformation in virus-like particles (VLPs). Here we used single-molecule Förster...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 162  شماره 

صفحات  -

تاریخ انتشار 2003